Simplified example of bulk add for InterLex terms.
Prerequisite code
With gspread, you can automate various tasks such as retrieving and updating tabular data, clearing sheets, and handling multiple tabs within a Google Sheet. This can significantly streamline workflows involving InterLex terms.gspread is a powerful tool for interacting with Google Sheets, allowing users to add and update InterLex terms efficiently. It offers functionality to open, modify, and manage Google Sheets using Python, making it easier to handle data programmatically.
All the needed code for gspread is found below:
import gspread classGSheet:"""Can Opens/Modify Google sheets 1 tab at a time :D"""def__init__(self,sheet_name:str) ->None: gc = gspread.oauth() self.sheet_name = sheet_nametry: self.sheet = gc.open(sheet_name)except: self.sheet = gc.open_by_key(sheet_name)defget_tab(self,tab_name:str) -> pd.DataFrame:""" Get Google Sheet tab as a pandas DataFrame Parameters ---------- tab_name : str Specific Google Sheet tab name (Google has the default to "Sheet1") Returns ------- pd.DataFrame """ worksheet = self.sheet.worksheet(tab_name)try: header,*body = worksheet.get_all_values()return pd.DataFrame(body, columns=header)except:# worksheet is emptyreturn pd.DataFrame()defupdate_tab(self,tab_name:str,df: pd.DataFrame,cell_range:str=None,include_header:bool=True, ) ->None:""" Updates only the text of a single tab within the Google Sheet initialized. This does not update the Google Sheet settings, colors, fonts, or funcitons. Just the text value. Parameters ---------- tab_name : str Google Sheet tab name df : pd.DataFrame DataFrame of the data to be completely overwritten on the tab """ worksheet = self.sheet.worksheet(tab_name)if include_header: data = [df.columns.values.tolist()] + df.values.tolist()else: data = df.values.tolist()if cell_range: worksheet.update(cell_range, data)else: worksheet.update(data)defclear(self,tab_name:str) ->None:"""deletes contents of sheet""" worksheet = self.sheet.worksheet(tab_name) worksheet.clear()
Gspread Usage
Gspread should be unique in naming scheme in order to avoid using ID hashes for the input.
With the string_profiler function you can clean the existing labels with parenthesis for special
defstring_profiler(string:str,start_delimiter:str='(',end_delimiter:str=')',remove:bool=True,keep_delimiter:bool=True, ) -> List[str]:''' Seperates strings fragements into list based on the start and end delimiters Args: string: complete string you want to be broken up based on start and stop delimiters given start_delimiter: delimiter element to start end_delimiter: delimiter elemtent to end remove: decide whether or not to keep strings inside the delimiters Returns: List[str]: list of strings that are split at start and end delimiters given and whether or not you want to remove the string inside the delimiters Tests: long = '(life is is good) love world "(blah) blah" "here I am" once again "yes" blah ' print(string_profiler(long)) null = '' print(string_profiler(null)) short = '(life love) yes(and much more)' print(string_profiler(short)) short = 'yes "life love"' print(string_profiler(short)) ''' outer_index =0# stepper for outer delimier string elements inner_index =0# stepper for inner delimier string elements curr_index =0# actual index of the current element in the string string_list = [] # string broken up into individual elements whenever a start and end delimiter is hit outer_string =''# string tracked while outside the delimiters inner_string =''# string tracked while inside the delimitersfor outer_index inrange(len(string)):# Actual pointer position (inner delimiter counter + outer delimiter counter) curr_index = inner_index + outer_index# Close once acutal index is at the end# NOTE: outer_index will keep going till end regardless of hitting a delimiter and adding to inner stepper.if curr_index ==len(string):break### DELIMITER HIT ###if string[curr_index]== start_delimiter:# If we his a delimiter, collect the string previous to that as an element; flushif outer_string:# Option: .extend(outer_string.strip().split()) | If you want every word seperate. Maybe an option? string_list.append(outer_string.strip()) outer_string =''for j inrange(curr_index+1, len(string)):# Stepper that is pushed while in inner delimiter string. inner_index +=1# Once we his the end delimiter, stop iterating through the inner delimiter stringif string[j]== end_delimiter:break# String inside delimiters inner_string += string[j]# If you want the string inside the delimitersifnot remove:if keep_delimiter: inner_string = start_delimiter + inner_string + end_delimiter string_list.append(inner_string)# inner delimiter string restart inner_string =''# String outside of the delimiterselse: outer_string += string[curr_index]# End delimiter is either nested or not the real target; should ignoreif string[curr_index]== end_delimiter:if string_list and outer_string: string_list[-1]+= outer_string outer_string =''# In case of not hiting a delimiter at the end of the string, collect the remaining outer delimiter string# Option: .extend(outer_string.strip().split()) | If you want every word seperate. Maybe an option?if outer_string: string_list.append(outer_string.strip())return string_list
ilx_id_column ='ILX UUID'for i, row in df.iterrows(): entity_field = row.to_dict()if'interlex'in row[ilx_id_column]:continueelifnot row['cleaned_label']:continueelif row['cleaned_label']in cleaned_labels:print('row:', row.name +2, ' -- ', row['cleaned_label'], ['http://uri.interlex.org/base/'+ ilx for ilx in label2ilx[row['cleaned_label']]])continue df.loc[i, ilx_id_column]= ilx_cli.add_entity(label=row['label'].strip(), type='term', definition=row['Definition'], **entity_fields)['ilx']
Update Google Tabe
! Warning ! Please make sure that there is an existing 'ILX UUID' column in the sheet to write over or it will append the column and might remove the annotation meaning such as colors and grouped sets made on the Google sheets.